Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(1): 70-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550391

RESUMO

Sustained autocatalysis coupled to compartment growth and division is a key step in the origin of life, but an experimental demonstration of this phenomenon in an artificial system has previously proven elusive. We show that autocatalytic reactions within compartments-when autocatalysis, and reactant and solvent exchange outpace product exchange-drive osmosis and diffusion, resulting in compartment growth. We demonstrate, using the formose reaction compartmentalized in aqueous droplets in an emulsion, that compartment volume can more than double. Competition for a common reactant (formaldehyde) causes variation in droplet growth rate based on the composition of the surrounding droplets. These growth rate variations are partially transmitted after selective division of the largest droplets by shearing, which converts growth-rate differences into differences in droplet frequency. This shows how a combination of properties of living systems (growth, division, variation, competition, rudimentary heredity and selection) can arise from simple physical-chemical processes and may have paved the way for the emergence of evolution by natural selection.


Assuntos
Origem da Vida , Reprodução , Catálise , Difusão , Água
2.
Astrobiology ; 23(11): 1228-1237, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819715

RESUMO

The term biosignature has become increasingly prevalent in astrobiology literature as our ability to search for life advances. Although this term has been useful to the community, its definition is not settled. Existing definitions conflict sharply over the balance of evidence needed to establish a biosignature, which leads to misunderstanding and confusion about what is being claimed when biosignatures are purportedly detected. To resolve this, we offer a new definition of a biosignature as any phenomenon for which biological processes are a known possible explanation and whose potential abiotic causes have been reasonably explored and ruled out. This definition is strong enough to do the work required of it in multiple contexts-from the search for life on Mars to exoplanet spectroscopy-where the quality and indeed quantity of obtainable evidence is markedly different. Moreover, it addresses the pernicious problem of unconceived abiotic mimics that is central to biosignature research. We show that the new definition yields intuitively satisfying judgments when applied to historical biosignature claims. We also reaffirm the importance of multidisciplinary work on abiotic mimics to narrow the gap between the detection of a biosignature and a confirmed discovery of life.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia , Análise Espectral
3.
Astrobiology ; 23(11): 1202-1212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506351

RESUMO

Potential biosignatures that offer the promise of extraterrestrial life (past or present) are to be expected in the coming years and decades, whether from within our own solar system, from an exoplanet atmosphere, or otherwise. With each such potential biosignature, the degree of our uncertainty will be the first question asked. Have we really identified extraterrestrial life? How sure are we? This paper considers the problem of unconceived alternative explanations. We stress that articulating our uncertainty requires an assessment of the extent to which we have explored the relevant possibility space. It is argued that, for most conceivable potential biosignatures, we currently have not explored the relevant possibility space very thoroughly at all. Not only does this severely limit the circumstances in which we could reasonably be confident in our detection of extraterrestrial life, it also poses a significant challenge to any attempt to quantify our degree of uncertainty. The discussion leads us to the following recommendation: when it comes specifically to an extraterrestrial life-detection claim, the astrobiology community should follow the uncertainty assessment approach adopted by the Intergovernmental Panel on Climate Change (IPCC).


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Incerteza , Sistema Solar
4.
Astrobiology ; 22(7): 851-862, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594335

RESUMO

The question of the origin of life is a tenacious question that challenges many branches of science but is also extremely multifaceted. While prebiotic chemistry and micropaleontology reformulate the question as that of explaining the appearance of life on Earth in the deep past, systems chemistry and synthetic biology typically understand the question as that of demonstrating the synthesis of novel living matter from nonliving matter independently of historical constraints. The objective of this contribution is to disentangle the different readings of the origin-of-life question found in science. We identify three main dimensions along which the question can be differently constrained depending on context: historical adequacy, natural spontaneity, and similarity to life-as-we-know-it. We argue that the epistemic status of what needs to be explained-the explanandum-varies from approximately true when the origin-of-life question is the most constrained to entirely speculative when the constraints are the most relaxed. This difference in epistemic status triggers a shift in the nature of the origin-of-life question from an explanation-seeking question in the most constrained case to a fact-establishing question in the lesser-constrained ones. We furthermore explore how answers to some interpretations of the origin-of-life questions matter for other interpretations.


Assuntos
Planeta Terra , Origem da Vida
5.
Chem Commun (Camb) ; 57(61): 7517-7520, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34235521

RESUMO

We demonstrate that a recombinase ribozyme achieves multiple functions in the same reaction network: self-reproduction, iterative elongation and circularization of other RNAs, leading to synthesis of diverse products predicted by a kinetic model. This shows that key mechanisms can be integrated and controlled toward Darwinian evolution in RNA reaction networks.


Assuntos
RNA Bacteriano/genética , RNA Catalítico/genética , RNA/genética , Azoarcus/enzimologia , Biocatálise , Fenômenos Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetidas Invertidas , Cinética , RNA/química , RNA Bacteriano/química , RNA Catalítico/química , Recombinases/química , Recombinases/genética
6.
iScience ; 23(11): 101756, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33241201

RESUMO

Thresholds are widespread in origin of life scenarios, from the emergence of chirality, to the appearance of vesicles, of autocatalysis, all the way up to Darwinian evolution. Here, we analyze the "error threshold," which poses a condition for sustaining polymer replication, and generalize the threshold approach to other properties of prebiotic systems. Thresholds provide theoretical predictions, prescribe experimental tests, and integrate interdisciplinary knowledge. The coupling between systems and their environment determines how thresholds can be crossed, leading to different categories of prebiotic transitions. Articulating multiple thresholds reveals evolutionary properties in prebiotic scenarios. Overall, thresholds indicate how to assess, revise, and compare origin of life scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...